Impact of the haplotypes of the human pregnane X receptor gene on the basal and St John's wort‐induced activity of cytochrome P450 3A4 enzyme

Article date: February 2009

By: Xue‐Ding Wang, Jia‐Li Li, Qi‐Biao Su, Su Guan, Jie Chen, Jun Du, Yu‐Wen He, Jun Zeng, Jin‐Xin Zhang, Xiao Chen, Min Huang, Shu‐Feng Zhou, in Volume 67, Issue 2, pages 255-261

WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT

AIMS

Human pregnane X receptor (PXR/NR1I2) is the master regulator of CYP3A4, which metabolizes >50% of drugs on the market. This study investigated the relationship between the two most frequent haplotypes [H1 (TCAGGGGCCACC) and H2 (CCGAAAACTAAT)] of PXR and basal and St John's wort (SJW)‐induced CYP3A4 activity.

METHODS

Ten healthy subjects carrying H1 and H2 haplotypes (three subjects with H1/H1, four with H1/H2 and three with H2/H2) entered this study. The 10 subjects did not carry CYP3A4*4, *5 and *6. All subjects were administrated a 300‐mg SJW tablet three times daily for 14 days, and CYP3A4 activity was measured using nifedipine (NIF) as a probe. The plasma concentrations of NIF and dehydronifedipine (DNIF) were determined by a validated liquid chromatography/mass spectrometry/mass spectrometry method.

RESULTS

After administration of SJW, the AUC0–∞ of NIF decreased significantly, and the AUC0–∞ of DNIF increased significantly (P < 0.05). For H1/H2, the AUC0–∞ of NIF decreased by 42.4%, and the AUC0–∞ of DNIF increased by 20.2%; for H2/H2, the AUC0–∞ of NIF decreased by 47.9%, and the AUC0–∞ of DNIF increased by 33.0%; for H1/H1, the AUC0–∞ of NIF decreased by 29.0%, yet the AUC0–∞ of DNIF increased by 106.7%. The increase of the AUC0–∞ of DNIF in H1/H1 was significantly different from the other two haplotype pairs (P < 0.05). Meanwhile, before administration of SJW, the ratio of AUC0–∞(DNIF)/AUC0–∞(NIF) was the lowest for H1/H1 (22.1%), compared with H1/H2 (58.7%) and H2/H2 (30.0%).

CONCLUSIONS

H1/H1 of the human PXR gene had weaker basal transcriptional activity but greater inducible transcriptional activity to CYP3A4 than H1/H2 and H2/H2.

DOI: 10.1111/j.1365-2125.2008.03344.x

View this article