Species-specific differences in cerebellar cannabinoid 1 (CB₁) receptor function

Introduction. We have recently identified species-specific effects of cannabis extracts which suggested differential CB₁ expression and functional receptor activation by Δ^9 -tetrahydrocannabidinol (THC) [1]. Here, we extend these data on CB₁ receptor function in cerebellar membranes from different species.

Methods. [³H]-SR1416717A (a CB₁ receptor antagonist) saturation binding and THC (a CB₁ receptor partial agonist)-stimulated [³⁵S]-GTPγS binding assays were performed in cerebellar membrane preparations from mouse, rat, chicken, dog and human tissue. Assays were conducted in triplicate and 5 separate assays performed in each case. Analyses of saturation binding data were conducted by nonlinear regression and fitted to a one-binding site model to determine maximal number of binding sites B_{max} and the equilibrium dissociation constant K_D. GTPγS binding data were analysed using a sigmoidal concentration-response model to determine EC₅₀ and maximum response (E_{max}). Statistical significance was determined using an ANOVA followed by a Tukey's post hoc test on raw data. **Results.** In saturation binding studies, a significant reduction in B_{max} was seen in human (P<0.05 vs mouse and rat) and dog (P<0.05 vs mouse) cerebella membranes (Table 1); there were no significant changes in K_D between species. THC-stimulated GTPγS binding showed significant differences in E_{max} elicited by CB₁ receptor activation (Table 1) with a rank order of chicken = rat = dog > mouse = human (P<0.05 for all members of each group) was seen; there were no significant changes in EC₅₀ between species.

	Saturation binding		GTP _y S binding	
	B _{max}	K _D	EC ₅₀	E _{max}
	(pmol mg ⁻¹)	(nM)	(nM)	(%)
Chicken (n= 5)	1.44 ± 0.2	1.57 ± 0.7	107 ± 10	33.9 ± 1.8
Rat (n=5)	1.80 ± 0.4	1.06 ± 0.1	92 ± 30	33.6 ± 2.5
Mouse (n=5)	2.40 ± 0.4	2.30 ± 0.6	138 ± 49	$12.0 \pm 1.8^{\Psi}$
Dog (n=5)	$0.80\pm0.2^{*}$	0.54 ± 0.2	170 ± 59	27.4 ± 1.8
Human (n=5)	$0.46\pm0.1^{*\delta}$	2.07 ± 0.3	25 ± 9.9	$11.3 \pm 2.4^{\Psi}$

Table 1. Cerebellar CB₁ receptor binding data for different species

* p<0.05 vs mouse; δ p<0.05 vs rat; Ψ p<0.05 vs each of chicken, rat and dog

Conclusions

We identify significant species-selective differences in CB_1 expression and functional receptor activation. Overall, human had a lower CB_1 receptor activity profile which confirm that THC effects in animal tissue models may be poorly predicted of those on human CB_1 receptor-mediated processes. References

[1] Whalley BJ, Lin H, Bell L, Hill T, Patel A, Gray RA, Roberts CE, Devinsky O, Bazelot M, Williams CM, Stephens, GJ (2018) Species-specific susceptibility to cannabis-induced convulsions. Br J Pharmacol Epub ahead of print Feb 19.