Predict Drug-induced Nausea with Deep Learning using a new Gastro-Intestinal Pacemaker Activity Drug Database (GIPADD) CHAU Chuen Hephaes¹, LIU Yuen Hang Julia^{1,2}, John Anthony RUDD^{1,2}

1 Gut Rhythm R&D (Hong Kong) Limited

2 School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P.R. China

INTRODUCTION

Bio-electrical data is a new type of big-data for training artificial intelligence (AI) in drug discovery. We make use of a microelectrode array platform for efficient drug screening of drug-induced acute effects on gut pacemaker activity ^[1], creating a novel drug database named "Gastro-Intestinal Pacemaker Activity Drug Database" (GIPADD). As a proof of concept, we had previously trained a few machine learning classification models based on a smaller database in 2021 (89 drugs, 4,867 datasets)^[2]. In this study, we use our updated GIPADD (>170 drugs, >10,000 datasets) to predict a selected drug adverse effect (ADR), nausea, by deep learning models.

Predicted

Nausea-

index

0.913

Size of GIPADD database		89 drugs; 4,867 datasets					>170 drugs; >10,000 datasets			
Cutoff time		Feb 2022					Aug 2023			
Model used		Machine learning classifiers: Naïve Bayes, discriminant analysis, classification tree, k- nearest neighbors, support vector machine and an ensemble model					Deep learning classifiers: simple CNN classifier (CNN), a fully connected neural network (FCNN) and an inception time classifier (INCT)			
Nausea-prediction model		Accuracy <70%					Internal validation accuracy 73% (INCT)			
External validation		Not performed					A few non-SIDER-listed drugs			
Parameters (per datasets)		24					>8.3k (CNN), >320k (FCNN), >500k (INCT)			
The second secon	Drugs test matched wit in Side Effect A balanced negative (1352:1352)	ted were th SIDER-ID t Resource (positive-to- e) dataset was created		Two-hundred seconds of base and combined to create a joi 2,000x60 ("interference") in Further divided into trainin and validation datasets with a ratio of 8:2		 ine and post-drug filtered data were extracted ned 2,000x120 ("concatenate") or summated put matrix for training deep learning models 5 Negative controls were tested by shuffling the annotations in training datasets 				
	models were tested: simple CNN classifier (CNN), a fully connected neural network (FCNN) and an inception time classifier (INCT)				7	was eval precision, AU	luated for , recall and ROC	r 8 nd	tested on a few drugs known to induce nausea, but not listed in SIDER database	

Old publication ^[2]

ADR: nausea)

Drug Name (Known relations to

Cisplatin (Nausea-inducing)

Performance validation. Training using real datasets and datasets with shuffled labels (negative control) were performed Table showing the prediction three times separately. Different balanced subsets of positive and negative datasets were extracted from GIPADD for each results (predicted nausea training attempt. Models were trained using a concatenated input matrix. FCNN (Zhao et al., 2017) and INCT (Fawaz, 2020) index) of a few drugs used in have significantly higher average recall, average precision and AUROC when using real datasets compared to negative training models (i.e. with listed SIDERcontrols (*p<0.05, **p < 0.01, n = 3, paired t-test), but CNN model (p>0.05, n = 3, paired t-test) does not. (B) Comparison ID) for internal validation and a few drugs without SIDER-ID for external between 3 deep learning models. Both INCT and FCNN have a significantly better performance than CNN. (C) The validation (data not used in training difference in performance of a concatenated versus interference input matrix is insignificant for all models except FCNN models). The external validation drugs (p<0.05, unpaired t-test), with interference matrices eliciting better recall for FCNN. Training time is shorter using interference because a smaller input matrix (2,000x60) was used compared to the concatenated counterpart (2,000x120).

0.710							
0.389							
0.079							
External Validation (Without SIDER ID) Not used in training model							
0.317							
0.840							
0.811							
0.596							
0.671							
0.382							

香港中文大學

The Chinese University of Hong Kong

Internal Validation (With SIDER ID)

Used in training model

have known associations with nausea in literature: nausea-inducing drugs include exendin-4 (Fineman et al., 2004), GLP-1 (Sikirica et al., 2017), semaglutide (Loomba et al., 2023) and rolipram (Gobejishvili et al., 2022); and drugs reducing nausea include sulpiride (Bianconcini et al., 1988) and cisapride (Russel, 1996).

REFERENCE [1] **I Ja**n Ka

CONCLUSION

- A nausea prediction model was successfully \bullet trained using GIPADD as the input database
- Apply for novel drug safety assessments
- More models are now being trained for other \bullet ADRs to optimize GIPADD potential.

兀 創 新 科 技 署 Innovation and Technology Commissi

Supported by Knowledge Transfer Fund at CUHK 香港中文大學知識轉移基金支持項目

Supported by Technology Start-up Support Scheme for Universities, Innovation and Technology Commission

Follow updates of our "bio-electrical" drug database GIPADD (to be launched Jan 2024)

Gut'Rhythm

This abstract