Predict Drug-induced Nausea with Deep Learning using a new
Gastro-Intestinal Pacemaker Activity Drug Database (GIPADD)

CHAU Chuen Hephaes?, LIU Yuen Hang Juliat2, John Anthony RUDD**

1 Gut Rhythm R&D (Hong Kong) Limited
2 School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P.R. China

INTRODUCTION Bio-electrical data is a new type of big-data for training artificial intelligence (Al) in drug discovery. We make use of a
microelectrode array platform for efficient drug screening of drug-induced acute effects on gut pacemaker activity !X, creating a novel drug
database named “Gastro-Intestinal Pacemaker Activity Drug Database” (GIPADD). As a proof of concept, we had previously trained a few machine
learning classification models based on a smaller database in 2021 (89 drugs, 4,867 datasets)!2l. In this study, we use our updated GIPADD (>170
drugs, >10,000 datasets) to predict a selected drug adverse effect (ADR), nausea, by deep learning models.
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