Pharmacokinetic and Pharmacodynamic Assessment of Intradermal Insulin Delivery in a Rats: Microneedle vs. **Conventional Needle vs. Subcutaneous Injection**

Ishumeet K. Bajwa, Joseph L. Mathew, Smita Pattanaik, Naresh Sachdeva, Yashwant Kumar, Monica Anand.

Department of Pediatrics; Department of Pediatrics; Department of Pharmacology; Department of Endocrinology; Department of Immunology; **Central Animal House Facility**

Postgraduate Institute of Medical Education and Research, Chandigarh (India).

Introduction

Microneedles are novel and effective transdermal drug delivery system which facilitate drug delivery into the dermis layer of skin, with minimum pain [1]. To assess safety and efficacy, we tested microneedles in rats, comparing their pharmacokinetics and pharmacodynamics to conventional subcutaneous and intradermal administration.

Methods

Standardisation of Microneedle- various lengths of microneedles such 500 μ , 550 μ , 600 μ , 650 μ, 700 μ, 750 μ, 800 μ were tested and as per the skin thickness 750 μ microneedle was observed to be ideal for intradermal delivery in rats.

Total thirty male Sprague Dawley rats, aged 3-4 months and weighing 200-250 grams each, were included in the study. Rats received 3 IU/kg Actrapid (recombinant human insulin) via three methods: subcutaneously (SC) with 23G needle (n=10), intradermally (ID) with 26G needle (n=10), or intradermally with microneedle (MN) (n=10).

Blood samples collected via retro-orbital method over 3 hours. Insulin levels assessed using electrochemiluminescence assay, and blood glucose levels determined via autoanalyzer. Pharmacokinetic parameters, including AUC, C_{max} , T_{max} , and $T_{1/2}$, were calculated. Mean and standard deviation were used for statistical analysis, with p-values determined via ANOVA to ascertain significance.

Result

The drug was effectively delivered via microneedles without adverse effects such as bleeding, erythema, swelling, or pain, confirming its safety.

Mean±SD and N, analyzed using two-way ANOVA followed by Tukey's test for post hoc comparisons. There is no significant difference between, AUC of plasma insulin for MN vs ID (p value=0.93); and for ID vs SC (p value=0.068); and for MN vs SC (p value=0.069). Similarly, there was no significant difference, plasma glucose levels for MN vs ID (p value=0.92); for MN vs SC (p value=0.98); and for ID vs SC (p value=0.85).

Mean (SD) bioavailability via AUC by trapezoidal method was 272.97(±202 SD) ng.h/ml, 288.48 (±241.72 SD) ng.h/ml, and 349.01 (±215.68 SD) ng.h/ml for MN, ID and SC injection respectively. The respective mean (SD) Tmax values were 48.33 (±23.45 SD) min, 46.67 (±20.46 SD) min, 28.33 (±5.00 SD) min.

Omin 5min 30min 60min 90min 20min 80min Time

Figure 1: Graphical representation of Mean and SD of the 3 groups (MN, ID & SC). Bars representing the mean plasma insulin levels and error bars representing the standard deviation Figure 2: Graphical representation of Mean and SD of the 3 groups (MN, ID & SC). Bars representing the mean plasma glucose levels and error bars representing the standard deviation

Time

Figure 3, 4, & 5 representing the pharmacokinetic profile of insulin among the 3 groups MN, ID, SC.

Evaluation of *pharmacokinetic* and *pharmacodynamic* profile of insulin Measurement of insulin and blood glucose level (electro chemiluminescence assay and autoanalyzer method respectively) Calculation of PK parameters viz C_{max} , T_{max} , $T_{1/2}$, AUC (area under the curve) and bioavailability. Comparison across the three groups

Figure : (1) Flowchart representing the detailed methodology, (2) Microneedle used 750 µm length and 200 µm diameter.

- Mean (SD) of C_{max} observed : MN is 212.7 (± 111.45 SD) μU/ml, ID is 278.06 (± 220.93) μU/ml, SC is 429.81 (± 335.92 SD) µU/ml
- Mean (SD) of T_{max} observed : MN is 46.5 (±22.85 SD) min, ID is 45 (±20 SD) min, SC is 31.5 (±11.06 SD) min
- Mean (SD) of $T_{1/2}$ observed : MN is 0.61 (± 0.57 SD) hr, ID is 0.47 (± 0.38 SD) hr, SC is 0.78 (± 1.17) min)

Conclusion

Data confirm microneedle intradermal injection's safety and efficacy, paving the way for human clinical studies.

Reference

[1] Liu D, Yu B, Jiang G, Yu W, Zhang Y, Xu B. Fabrication of composite microneedles integrated with insulin-loaded CaCO3 microparticles and PVP for transdermal delivery in diabetic rats. Materials Science and Engineering: C. 2018 Sep 1;90:180-8.

[2] Wang Y, Wang H, Zhu XX, Guan Y, Zhang Y. Smart microneedle patches for rapid, and painless transdermal insulin delivery. Journal of Materials Chemistry B. 2020;8(40):9335-42.